Impacto de la Inteligencia Artificial en la Radiología

Introducción: El creciente desarrollo computacional ocurrido en los últimos años, así como el acceso a gran número de datos (Big Data) ha posibilitado la explotación de los recursos informáticos para el desarrollo de algoritmos que aumentan la calidad y alcance de la inteligencia artificial (IA), la cual está tomando un rol central en la radiología.

Objetivo: Analizar el impacto de la Inteligencia Artificial en la Radiología y la necesidad de implementación en los servicios de imagenología.

Método: Se emplearon 23 referencias bibliográficas en inglés y español, la mayoría extraídas de PubMed, SciELO y ScienceDirect usando los descriptores “Inteligencia Artificial”, “Radiología” y “Aprendizaje automático” en idioma español yArtificial Intelligence”, “Radiology” y “Machine Learning” para el inglés.

Desarrollo: No existe área de la Radiología en la cual no se haya implementado la inteligencia artificial, con el fin de mejorar y desarrollar programas que le faciliten al radiólogo y al técnico, la obtención y diagnóstico de imágenes. Cuba también está inmersa en este proceso; se están dando los primeros pasos por el desarrollo de estas tecnologías.

Conclusiones: La investigación, optimización de flujo de trabajo, radiómica, predicción y clasificación de imágenes son beneficios que nos aporta la IA; lograr un aumento en la calidad de estos procesos solo es posible a través de la alianza entre las ciencias médicas e informáticas.

Palabras clave: inteligencia artificial; radiología; aprendizaje automático.

  

ABSTRACT

Introduction: The growing computational development that has occurred in recent years, as well as the access to a large number of data (Big Data), has made the exploitation of computing resources possible to develop algorithms that increase the quality and scope of artificial intelligence (AI), which is taking a central role in radiology.

Objective: To analyze the impact of artificial intelligence in radiology and the need for its implementation in imaging services.

Method: A total of 23 bibliographical references in English and Spanish, most of them obtained from PubMed, SciELO and ScienceDirect databases, were analyzed using descriptors such as “inteligencia artificial”, “radiología” and “aprendizaje automático” for the Spanish language and "artificial intelligence", “radiology” and “machine learning” for the English language. 

Results: There is no area of Radiology in which artificial intelligence has not been implemented in order to improve and develop programs that make it easier for the radiologist and the technician to obtain and diagnose images. Cuba is also immersed in this process; the first steps are being taken towards the development of these technologies.

Conclusions: Research, workflow optimization, radiomics, prediction and classification of images are benefits that AI brings us; achieving an increase in the quality of these processes is only possible through the alliance between medical and computer sciences.

Keywords: artificial intelligence; radiology; automatic learning.

Dannier Iglesias López
 PDF
 
Ecografía Inteligente
Rebeca Tenajas, David Miraut
 PDF
 
Clasificación de Imágenes de Neumonía a causa de Covid-19 utilizando Transfer-Learning basado en Redes Convolucionales

La Inteligencia Artificial ha ayudado a lidiar diferentes problemas relacionados con los datos masivos y a su vez con su tratamiento, diagnóstico y detección de enfermedades como la que actualmente nos preocupa, la Covid-19. El objetivo de esta investigación ha sido analizar y desarrollar la clasificación de imágenes de neumonía a causa de covid-19 para un diagnostico efectivo y óptimo. Se ha usado Transfer-Learning aplicando ResNet, DenseNet, Poling y Dense layer para la elaboración de los modelos de red propios Covid-UPeU y Covid-UPeU-TL, utilizando las plataformas Kaggle y Google colab, donde se realizaron 4 experimentos. El resultado con una mejor clasificación de imágenes se obtuvo en el experimento 4 prueba N°2 con el modelo Covid-UPeU-TL donde Acc.Train: 0.9664 y Acc.Test: 0.9851. Los modelos implementados han sido desarrollados con el propósito de tener una visión holística de los factores para la optimización en la clasificación de imágenes de neumonía a causa de COVID-19.

Palabras clave: covid-19; transfer-learning; reconocimiento; inteligencia artificial; pandemia; rayos x; clasificación de imágenes; pulmones; redes convolucionales.

 

Abstract

Artificial Intelligence has helped to deal with different problems related to massive data in turn to the treatment, diagnosis and detection of diseases such as the one that currently has us in concern, Covid-19. The objective of this research has been to analyze and develop the classification of images of pneumonia due to covid-19 for an effective and optimal diagnosis. Transfer-Learning has been used applying ResNet, DenseNet, Poling and Dense layer for the elaboration of the own network models Covid-Upeu and Covid-UpeU-TL, using Kaggle and Google colab platforms, where 4 experiments have been carried out. The result with a better classification of images was obtained in experiment 4 test N ° 2 with the Covid-UPeU-TL model where Acc.Train: 0.9664 and Acc.Test: 0.9851. The implemented models have been developed with the purpose of having a holistic view of the factors for optimization in the classification of pneumonia COVID-19 images.

Keywords: COVID-19; Transfer-Learnig; Recognition; Artificial intelligence; Pandemic; X-rays; Image classification; Lungs; convolutional networks.

Adiel Joshua Preciado Rodriguez, Flor Mayerli Flores Guillén, Aldo Emanuel Soraluz Soraluz, Jonathan Gerhard Rios Jara
 PDF  XML
 
Elementos 1 - 3 de 3

Consejos de búsqueda:

  • Los términos de búsqueda no distinguen entre mayúsculas y minúsculas
  • Las palabras comunes serán ignoradas
  • Por defecto, sólo aquellos artículos que contengantodos los términos en consulta, serán devueltos (p. ej.: Y está implícito)
  • Combine múltiples palabras conO para encontrar artículos que contengan cualquier término; p. ej., educación O investigación
  • Utilice paréntesis para crear consultas más complejas; p. ej., archivo ((revista O conferencia) NO tesis)
  • Busque frases exactas introduciendo comillas; p.ej, "publicaciones de acceso abierto"
  • Excluya una palabra poniendo como prefijo - o NO; p. ej. -política en línea o NO política en línea
  • Utilice * en un término como comodín para que cualquier secuencia de caracteres concuerde; p. ej., soci* moralidad hará que aparezcan aquellos documentos que contienen "sociológico" o "social"