Towards a Responsible Use of Statistics in Biomedical and Epidemiological Research

Authors

  • Jorge Bacallao Gallestey Universidad de Ciencias Médicas de La Habama

Abstract

Although the application of numerical methods to the study of typical research problems in the medical and health sciences dates back to the 1830s with the contributions of the French physician Pierre A. Louis, the formalization of mathematical statistics as an analytical tool is historically associated with the contributions of Karl Pearson, Ronald Fisher, and Austin Bradford Hill, who laid the foundations for what we know today as evidence-based medicine, beginning in the mid-20th century. Since then, the presence of some analytical tool from inferential statistics has been considered an indispensable and irreplaceable mark of quality in research. Without denying the instrumental value of statistical resources, the purpose of this essay is to argue that their irresponsible and superficial application has contributed to fostering an attitude of intellectual laziness among medical researchers and to the establishment of rigid norms that are contrary to the rigor and quality of scientific thought. The topic has universal interest and relevance, but the arguments in the article refer mainly to the author's experience in national scenarios, and refer in particular to two analytical resources whose irresponsible use is particularly frequent: statistical significance tests and predictive models.

Keywords: observational studies; randomized controlled clinical trials; sample size; confounding variables; linear models; prediction vs. explanation; hypothesis validation.

Downloads

Download data is not yet available.

Author Biography

Jorge Bacallao Gallestey, Universidad de Ciencias Médicas de La Habama

Doctor en Ciencias Médicas y Doctor en Ciencias. Profesor Titular

References

1. Barreto Villanueva A. El progreso de la Estadística y su utilidad en la evaluación del desarrollo. Papeles de población. 2012; 18 (73), 241-271).

2. Quintero KDS, Melo JSO (2022) Bioestadística: evolución y aplicaciones. Revista Sigma, 18(1), 1-7. https://dialnet.uniroja.es/).

3. Blakeley B. McShane, David Gal, Andrew Gelman, Christian Robert & Jennifer L. Tackett (2019) Abandon Statistical Significance, The American Statistician, 73:sup1,235-245, DOI: 10.1080/00031305.2018.1527253.

4. Stuart H. Hurlbert, Richard A. Levine & Jessica Utts (2019) Coup de Grâce for a Tough Old Bull: “Statistically Significant” Expires, The American Statistician, 3:sup1, 352-357, DOI: 10.1080/00031305.2018.1543616.

5. Valentin Amrhein, David Trafimow & Sander Greenland (2019) Inferential Statistics as Descriptive Statistics: There Is No Replication Crisis if We Don’t Expect Replication, The American Statistician, 73:sup1, 262-270, DOI: 10.1080/00031305.2018.1543137.

6. Hernán MA, Robins JM. Instruments for causal inference. An epidemiologist´s dream? Epidemiology 2006; 17: 360-372.

7. Joachim I. Krueger & Patrick R. Heck (2019) Putting the P-Value in its Place, The American Statistician, 73:sup1, 122-128, DOI: 10.1080/00031305.2018.1470033.

8. Ronald L. Wasserstein, Allen L. Schirm & Nicole A. Lazar (2019) Moving to a World Beyond “p < 0.05”, The American Statistician, 73:sup1, 1-19, DOI:10.1080/00031305.2019.1583913.

9. Rozeboom WW (1997) Good science is abductive, not hypothetico-deductive. En LL Harlow, SA Mulaik, & JH Steiger (Eds.), What if there were no significance tests? (pp. 335–391). Hillsdale, NJ: Erlbaum.

10. Steven N. Goodman (2019) Why is Getting Rid of P-Values So Hard? Musings on Science and Statistics, The American Statistician, 73:sup1, 26-30, DOI: 10.1080/00031305.2018.1558111.

11. Popper Karl R. Conjeturas y refutaciones. El desarrollo del conocimiento científico. Barcelona. Buenos Aires. México. Ediciones Paidós. 1991

12. Gattei Stéfano. Karl Popper´s Philosophy of Science. Rationality Without Foundations. Routledge Studies in the Phylosophy of Science 5. 2009.

Published

2025-11-11

How to Cite

1.
Bacallao Gallestey J. Towards a Responsible Use of Statistics in Biomedical and Epidemiological Research. RCIM [Internet]. 2025 Nov. 11 [cited 2025 Nov. 27];17:e867. Available from: https://revinformatica.sld.cu/index.php/rcim/article/view/867

Issue

Section

Original Articles