Application of Artificial Intelligence and Ant Colony Algorithm in the Simulation of Malaria Prevention and Control
Abstract
Introduction: Malaria remains one of the leading causes of morbidity in rural areas of Angola, especially in Bié Province, where logistical constraints hinder the effectiveness of prevention and control strategies. In response, integrative approaches are needed to link community-based nursing care with computational optimization tools.
Objective: To evaluate the application of the Ant Colony Optimization (ACO) algorithm, as an artificial intelligence technique to improve malaria prevention and control strategies.
Methods: A computational simulation was developed in Python (v3.10) using networkx, pymoo and matplotlib libraries. The model integrated three variables: distribution of nursing staff, frequency of home visits, and educational activities. Two scenarios were compared (random planning vs. ACO-optimized planning) in a simulated population of 120 people across 10 rural communities.
Results: The ACO-optimized planning reduced the total travel time from 39.2 to 27.0 hours (−31.1 %), increased home visit coverage from 73 to 110 people (+50.7 %) and improved care in priority areas from 46 % to 82.5 %. Educational interventions increased adherence to antimalarial treatment by 18 % to 35 %.
Conclusions: The implementation of the ACO algorithm proved effective in enhancing coverage, optimizing resource allocation, and strengthening the community-based response to malaria, contributing to the development of sustainable and replicable strategies in other highly endemic settings.
Keywords: malaria; territorial planning of community nursing; medical informatics applied to public health; health intervention management; direct community intervention; optimization algorithms; logistics efficiency.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Ydalsys Naranjo Hernández, Alexei Cala Hinojosa

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Aquellos autores/as que tengan publicaciones con esta revista, aceptan los términos siguientes:
- Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Licencia de Creative Commons Reconocimiento-NoComercial 4.0 Internacional que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista.
- Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista.
- Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos telemáticos institucionales o en su página web) antes y durante el proceso de envío, lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).
http://creativecommons.org/licenses/by-nc/4.0/

