Deep Learning aplicado en Imágenes Fotoacústicas para la Identificación del Cáncer de Seno
Palabras clave:
Imágenes fotoacústicas, tomografía fotoacústica, Deep Learning, Machine Learning, Cáncer de Seno, Reconstrucción de Imágenes.Resumen
La Imagen Fotoacústica (PAI por sus siglas en inglés), es una modalidad de imagen híbrida que fusiona la iluminación óptica y la detección por ultrasonido. Debido a que los métodos de imágenes ópticas puras no pueden mantener una alta resolución, la capacidad de lograr imágenes de contraste óptico de alta resolución en tejidos biológicos hace que la fotoacústica (PA por sus siglas en inglés) sea una técnica prometedora para varias aplicaciones de imágenes clínicas. En la actualidad el Aprendizaje Profundo (Deep Learning) tiene el enfoque más reciente en métodos basados en la PAI, donde existe una gran cantidad de aplicaciones en análisis de imágenes, en especial en el área del campo biomédico, como lo es la adquisición, segmentación y reconstrucciones de imágenes de tomografía computarizada. Esta revisión describe las últimas investigaciones en PAI y un análisis sobre las técnicas y métodos basados en Deep Learning, aplicado en diferentes modalidades para el diagnóstico de cáncer de seno.
Palabras clave: imágenes fotoacústicas; tomografía fotoacústica; deep learning; machine learning; cáncer de seno; cáncer de mama; reconstrucción de Imágenes.
Resumen
La Imagen Fotoacústica (PAI por sus siglas en inglés), es una modalidad de imagen híbrida que fusiona la iluminación óptica y la detección por ultrasonido. Debido a que los métodos de imágenes ópticas puras no pueden mantener una alta resolución, la capacidad de lograr imágenes de contraste óptico de alta resolución en tejidos biológicos hace que la fotoacústica (PA por sus siglas en inglés) sea una técnica prometedora para varias aplicaciones de imágenes clínicas. En la actualidad el Aprendizaje Profundo (Deep Learning) tiene el enfoque más reciente en métodos basados en la PAI, donde existe una gran cantidad de aplicaciones en análisis de imágenes, en especial en el área del campo biomédico, como lo es la adquisición, segmentación y reconstrucciones de imágenes de tomografía computarizada. Esta revisión describe las últimas investigaciones en PAI y un análisis sobre las técnicas y métodos basados en Deep Learning, aplicado en diferentes modalidades para el diagnóstico de cáncer de seno.
Palabras clave: imágenes fotoacústicas; tomografía fotoacústica; deep learning; machine learning; cáncer de seno; cáncer de mama; reconstrucción de Imágenes.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Aquellos autores/as que tengan publicaciones con esta revista, aceptan los términos siguientes:
- Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Licencia de Creative Commons Reconocimiento-NoComercial 4.0 Internacional que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista.
- Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista.
- Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos telemáticos institucionales o en su página web) antes y durante el proceso de envío, lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).
http://creativecommons.org/licenses/by-nc/4.0/