Tomografía fotoacústica y Deep Learning en aplicaciones médicas
Palabras clave:
Imagen Fotoacústica, Aprendizaje Profundo, Redes Neuronales, Aprendizaje Automático.Resumen
En las últimas décadas, las imágenes fotoacústicas han demostrado su eficacia en el apoyo al diagnóstico de algunas enfermedades, así como en la investigación médica, ya que a través de ellas es posible obtener información del cuerpo humano con características específicas y profundidad de penetración, desde 1 cm hasta 6 cm dependiendo en gran medida del tejido estudiado, además de una buena resolución. Las imágenes fotoacústicas son comparativamente jóvenes y emergentes y prometen mediciones en tiempo real, con procedimientos no invasivos y libres de radiación. Por otro lado, aplicar Deep Learning a imágenes fotoacústicas permite gestionar datos y transformarlos en información útil que genere conocimiento. Estas aplicaciones poseen ventajas únicas que facilitan la aplicación clínica. Se considera que con estas técnicas se pueden proporcionar diagnósticos médicos confiables. Es por eso que el objetivo de este artículo es proporcionar un panorama general de los casos donde se combina el Deep Learning con técnicas fotoacústicas.
Palabras clave: imagen fotoacústica; aprendizaje profundo; redes neuronales; aprendizaje automático.
Abstract
In recent decades, photoacoustic imaging has proven its effectiveness in supporting the diagnosis of some diseases as well as in medical research, since through it is possible to obtain information of the human body with specific characteristics and depth of penetration, from 1 cm to 6 cm depending largely on the tissue studied, in addition to a good resolution. Photoacoustic imaging is comparatively young and emerging and promises real-time measurements, with non-invasive and radiation-free procedures. On the other hand, applying Deep Learning to photoacoustic images allows managing data and transforming them into useful information that generates knowledge. These applications have unique advantages that facilitate clinical application. It may be possible with these techniques to provide reliable medical diagnoses. That is why the aim of this article is to provide an overview of cases combining Deep Learning with photoacoustic techniques.
Keywords: photoacoustic imaging; deep learning; neural networks; machine learning.
Descargas
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Aquellos autores/as que tengan publicaciones con esta revista, aceptan los términos siguientes:
- Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Licencia de Creative Commons Reconocimiento-NoComercial 4.0 Internacional que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista.
- Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista.
- Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos telemáticos institucionales o en su página web) antes y durante el proceso de envío, lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).
http://creativecommons.org/licenses/by-nc/4.0/