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ABSTRACT 
Deep neural network models represent the main reference for addressing automatic 
image classification problems. The successful training of this type of models depends 
on large amounts of labeled images. The current shortfall of labeled images in the 
radiology domain is a major obstacle for applying deep neural network models to this 
environment, and it is that the availability of labeled medical images for training this 
type of models remains insufficient. 
In this work, we address this problem through the creation of an “inverted index” of 
medical images. This is a data structure taken from the field of information retrieval 
and adapted to the radiology application domain. The fundamental idea is to organize 
images of an imaging repository, just using the image tags as an index. This way, it is 
possible to query the inverted index for different sets of anomalies or labels and to 
efficiently generate a wide variety of image sets for training deep neural network 
models. 
As a use case, we applied this solution to chest X-ray images from the PadChest 
repository. It was possible to efficiently organize its 160,000 images using an inverted 
index based on 174 anomalies (labels). Regarding the image access mechanism, 
provided by the authors of PadChest, the inverted index helped reduce the number of 
steps required to access images associated with a given anomaly by 10 times. By 
combining the inverted index with a hierarchy of radiological terms, which interrelates 
the anomalies present in the repository, it is possible to generate a huge variety of 
image sets to train deep neural network models for image classification tasks. 

https://creativecommons.org/licenses/by-nc/4.0/deed.es_ES
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://orcid.org/0000-0003-3132-5759
https://orcid.org/0000-0001-5714-3254
mailto:henry.blanco@uo.edu.cu


 

 

 

Revista Cubana de Informática Médica 2025;17:e835 

  

 
Este documento está bajo Licencia de Creative Commons Reconocimiento-NoComercial 4.0 

Internacional 
 

Keywords: deep learning; inverted index; medical images classification; convolutional 
neural networks; dictionary; machine learning; supervised learning; labeled image 
repositories; generated training datasets; indexing criteria.  
 
RESUMEN 
Los modelos de redes neuronales profundas, principal referente para abordar 
problemas de clasificación automática de imágenes, dependen de grandes cantidades 
de imágenes etiquetadas para su entrenamiento. Actualmente, esto resulta ser un 
importante obstáculo para aplicar exitosamente modelos de redes neuronales 
profundas al entorno radiológico. Y es que la disponibilidad de imágenes médicas 
etiquetadas para entrenar este tipo de modelos, es aún insuficiente.  
En este trabajo, esta problemática es abordada a través de la creación de un índice 
invertido de imágenes médicas. Esta es una estructura de datos tomada del campo de 
recuperación de información y adaptada al dominio de aplicación radiológico. La idea 
fundamental es organizar las imágenes de repositorios imagenológicos, utilizando 
como índice las etiquetas asociadas a las imágenes. De aquí, la posibilidad de generar 
eficientemente una amplia variedad de conjuntos de imágenes para entrenar modelos 
de redes neuronales profundas. 
Como caso de uso, aplicamos esta solución a imágenes radiográficas de tórax del 
repositorio, PadChest. Fue posible organizar sus 160 mil imágenes de forma eficiente 
a través de un índice invertido, basado en 174 anomalías (etiquetas). Respecto al 
mecanismo de acceso a las imágenes, brindado por los autores de PadChest, el índice 
invertido contribuyó a reducir 10 veces la cantidad de pasos necesarios para acceder 
a imágenes asociadas a una anomalía dada. Al combinar el índice invertido con una 
jerarquía de términos radiológicos, que interrelaciona las anomalías presentes en el 
repositorio, es posible generar una enorme variedad de conjuntos de imágenes para 
entrenar modelos de redes neuronales profundas en tareas de clasificación de 
imágenes. 
Palabras clave: aprendizaje profundo; índice invertido; clasificación de imágenes 
médicas; redes neuronales convolucionales; diccionario; aprendizaje automático; 
aprendizaje supervisado; repositorios de imágenes etiquetadas; conjuntos de datos 
de entrenamiento generados; criterios de indexación. 
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Introduction 

It could be said that, if a picture is worth a thousand words, for convolutional neural 
networks, thousand images are worth a good prediction. The availability of 
appropriate datasets for training convolutional neural networks is a major issue in 
achieving high levels of prediction in image classification tasks(1,2). This problem is 
particularly relevant in the field of medical imaging. Despite of the enormous amount 
of images generated by imaging equipment, the lack of labeled datasets poses strong 
limitations regarding automatic image classification tasks(3,4). The shortfall of expert 
or trained personnel (e.g., radiologists) capable to properly label medical images(5,6), 
plus the strong ethical-legal implications that this information entails by itself(7,8) 
makes this scenario difficult to navigate for artificial intelligence researchers. Hence 
the need to take full advantage of the labeled medical image repositories currently 
available. 
 
Convolutional neural networks (CNNs) are currently the reference models for tackling 
visual classification tasks automatically(9,10). These models have outperformed other 
traditional models already established in the field of machine learning, even in 
important image classification competitions such as: “ImageNet Large Scale Visual 
Recognition Challenge”(11,12). Inspired by the neural organization of the visual cortex 
of the human brain, CNNs are capable to automatically identify underlying patterns in 
the processed data. On this basis, and based on the observation of many examples 
(training process), CNNs can perform classification tasks with a high degree of 
accuracy(13). This success is largely due to the tens or hundreds of neural layers that 
make up these models. This facilitates the learning of a large variety of patterns (not 
perceptible to the naked eye) in the processed data. However, this success comes at 
a high price. The availability of large quantities of labeled images (above thousands of 
images) is essential. This is similar to the case of a linear equation with multiple 
variables, which requires multiple equations for its solution. In the same way, a CNN 
model requires many images to correctly tune millions of neural connection towards 
a particular expected output. 
 
There exists several online medical image repositories providing labeled data for 
training machine learning models on classification tasks(14,15). However, the availability 
of labeled images covering a wide variety of anomalies or pathology, is still not 
sufficient. Chest X-rays (CXR) image repositories do not escape from these limitations. 
Only few repositories exhibit a wide variety of labels, anomalies or findings in X-rays 
images. Currently, the most relevant CXR image repositories online are the following: 
PadChest(16,17), Mendeley(18), MIMIC-CXR(19), ChestXray(20) and CheXpert(21). In 
particular, the last two repositories stand out for the large number of images available 
(|ChestXray| > 112K images and |CheXpert| > 224K images). However, only 14 
anomalies or findings have been labeled in their images: atelectasis, consolidation, 
pneumonia, cardiomegaly, pneumothorax, pleural effusion, infiltration, edema, 
emphysema, hernia, nodule, fibrosis, tumor mass and pleural thickening. This 
limitation in terms of “anomaly or label diversity” makes harder to train CNN-based 
models on other anomalies of interest such as: COPD signs, scoliosis, aortic elongation, 
heart insufficiency, among others. 
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The exception to this low variety of anomalies and labeled images is the CXR image 
repository, “PadChest”. This is an open-access repository, with more than 160K images 
associated with 67K studies collected from 2009 to 2017 and reported by radiologists 
from the San Juan hospital, in Alicante, Spain. The radiology reports cover more than 
170 findings or anomalies, located in more than 100 anatomical regions. No fewer 
than 60 of these findings are present in at least 1,000 images (see Table 1). This 
scenario provides better opportunities to train CNN models in classification tasks on 
CXR images, labeled with a large variety of anomalies. Potentially, it is possible to 
consider 260 different sets of CXR images with anomalies or findings of interest. Hence 
the importance of organizing these images efficiently for a faster retrieval and for the 
flexible generation of large and diverse sets of images. 
 
Table 1. Findings in the repository PadChest with the largest number of images associated. 

  

The default indexing mechanism in PadChest is a list of records, encoded as a table, 
describing each image in the repository. Such data structure is computationally 
inefficient for a fast access and retrieval of the images. Particularly, each record in this 
table is a descriptor that characterizes a CXR image by using 36 features or attributes. 
Most of these features correspond to metadata extracted from the DICOM files which 
originally hosted the images. Two of these features are particularly relevant for 
classification tasks: “Labels” and “Localizations”. The feature “Labels”, is basically a list 
of anomalies or findings in an image, e.g. [“alveolar pattern”, “bronchiectasis”, 
“interstitial pattern”]. The “Localizations” attribute, represents a list of anatomical 
regions where the anomalies or findings have been localized, e.g.: [‘loc basal’, ‘loc 
infrahilar’, ‘loc bronchi’]. Hence the possibility of building training pairs (i, F) for 
supervised learning, where i represents an image and F is a set of findings present in 
the image i. These findings are extracted from the “Labels” feature. However, this list 
of records requires the entire table to be checked (i.e., more than 160K records) just 
to identify all the images associated to a given anomaly or finding. For example, for 
building a training dataset composed by images labeled as 'pseudo-nodule' or 
'calcified granuloma' or 'tumor mass', each image descriptor in the table must be 
analyzed. Particularly, for each image descriptor, the “Labels” attribute has to be 

anomaly or finding n. imgs. anomaly or finding n. imgs. 

normal 50,390 kyphosis 5,215 

COPD signs 23,280 laminar atelectasis 5,190 

cardiomegaly 15,022 vertebral degenerative change 4,878 

unchanged 14,334 vascular hilar enlargement 4,517 

aortic elongation 10,824 nodule 3,748 

pleural effusion 9,853 fibrotic band 3,713 

scoliosis 8,333 apical pleural thickening 3,625 

pneumonia 7,953 pacemaker 3,508 

interstitial pattern 7,799 venous catheter via jugular vein 3,204 

chronic changes 7,337 calcified granuloma 3,194 

infiltrates 7,089 callus rib fracture 2,967 

costophrenic angle blunting 6,784 atelectasis 2,905 

air trapping 6,147 sternotomy 2,849 

alveolar pattern 5,738 volume loss 2,757 

NSG tube 5,390 bronchiectasis 2,698 
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parsed. Then, if one of the aforementioned anomalies or findings is found, the 
corresponding image is included in the dataset for training purposes. This data 
processing approach is computationally expensive and inefficient. Consequently, the 
computational cost turns larger when new images are added to the repository, as 
expected in a real scenario. Therefore, a list of records or descriptors does not 
represent an appropriate data structure for fast access and retrieval of medical images 
associated to a given set of labels or anomalies. 
  
A much better solution for this problem can be obtained from the field of information 
retrieval, that is, by the creation of an inverted index(22,23), adapted to organize labeled 
medical images. This is a suitable data structure for organizing large volumes of data. 
In fact, this is what web search engines use for indexing and organizing data in Internet. 
More recently this data structure has been adapted for using in the biomedical 
field(24,25). This is motivated by the fact such data structure supports a fast access and 
retrieval of the data being indexed, e.g., medical images in our application domain. 
Consequently, this solution can potentially be applied to all type of labeled medical 
image repositories (CT, MR or CXR image repositories). 
 
Without loss of generalization, we introduce in this paper, as a use case, the 
adaptation, implementation and evaluation of an inverted index to organize the 
images of the PadChest repository. The general goal is to provide a tool that facilitates 
fast access and retrieval of PadChest images, plus the efficient creation of diverse 
image sets in terms of anomalies. This represents an important benefit for further 
training of CNN-based models on a large diversity of classification tasks. 
 
 

Methods 

To address the problem described in the previous section, we aimed at two main goals: 
1) to construct an inverted index, adapted to chest X-ray images from the PadChest 
repository; and 2) to implement a computational tool capable of generating training 
datasets supported by the inverted index. 
 
Design Tools 

We used the unified modeling language (UML)(26) for creating static and core views of 
the inverted index and the software tool that generates diverse CXR image training 
datasets.  
We additionally considered the design and implementation of a relational database 
for storing and retrieving the settings which makes reproducible the generation of 
training datasets of interest. 
 
Implementation Tools 

1. Implemented tools were fully based on open-source software systems.  
2. We used Python as programming language and Spyder as integrated 

development environment (IDE) system.  
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3. Ubuntu 22.04 was the operating system for which the designed tools were coded 
and evaluated.  

4. Reading and processing of the PadChest repository was performed through the 
libraries: Pandas and NumPy, respectively.  

5. The creation and management of a database, which preserves settings for 
reproducing generated training datasets, was based on the popular SQL query 
language and the SQLite library for Python. 

 
Evaluation Tools 

The performance of the inverted index was assessed theoretically and experimentally 
as follows:  
 
1. For the theoretical assessment of the adapted inverted index, we used 

algorithmic complexity techniques(27).  
2. We measured the average retrieval time of labeled images when using the 

inverted index and the mechanism given by PadChest, i.e., the table of CXR image 
descriptors.  

3. We evaluated the potential correlation existing between a dataset retrieval time 
and its number of images when using both, the inverted index and the PadChest’s 
table of descriptors. 

4. This evaluation on the retrieval time was performed on different datasets of 
images, with different dataset sizes. We observed the effect of dataset size on the 
retrieval time when the implemented inverted index. The datasets retrieved were 
associated to the following labels or anomalies in PadChest: normal (50K images), 
EPOC (23K images), cardiomegaly (15K images), aortic elongation (11K images), 
pleural effusion (9K images), nodule (3K images) and emphysema (1K images).  

 
 

Results and discusion 
Structure and Advantages of the Inverted Index 

 
In figure 1 we illustrate the general structure of the inverted index, designed and 
implemented for organizing the images of the PadChest repository. The inverted index 
is formally defined as follows: 
 
𝐼 = {(𝑎, 𝑆′): 𝑎 ∈ 𝑃𝑎𝑑𝐶ℎ𝑒𝑠𝑡. 𝐿𝑎𝑏𝑒𝑙𝑠 ∧ 𝑆′ ⊆ 𝑆} 
𝑆 = {(𝑖, 𝑅): 𝑖 ∈ 𝑃𝑎𝑑𝐶ℎ𝑒𝑠𝑡. 𝐼𝑚𝑎𝑔𝑒𝐼𝐷 ∧ 𝑅 ⊆ 𝑃𝑎𝑑𝐶ℎ𝑒𝑠𝑡. 𝐿𝑜𝑐𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛} 
 
That is to say, the inverted index I, is a set of pairs (a, S’), where ‘a’ is one of the 174 
anomalies or findings in PadChest. This means that anomalies are used as an indexing 
criteria. This is a totally different idea compared to the PadChest’s table of descriptors, 
where the ‘ImageID’ field represents the indexing criteria. On the other hand, S’ is a 
set of pairs (i, R) where ‘i’ is an image from PadChest and R is a set of anatomical 
regions, where the anomaly or finding is localized. 
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Figure 1. Inverted index of medical images, designed and implemented for organizing the images of 

the PadChest repository. 
 
From the computer science perspective, the designed inverted index is basically a data 
structure supported, in our implementation, by another well-known data structure: a 
dictionary. The keys in this dictionary are the anomalies or findings. Each key has 
associated another data structure: a list of images. Each image in the list has 
associated a set of anatomy regions where a finding (represented by a dictionary key) 
is located. 
 
This implementation approach of the inverted index is very advantageous with respect 
to the table of descriptors provided by the PadChest repository. Since a dictionary is 
the core data structure of the inverted index implemented, the access to images 
associated to a given anomaly is almost instantaneously. In fact, if we consider the 
“Big O” notation from the algorithm analysis, we can theoretically quantify to what 
extent one structure is more advantageous than the other. For example, let us 
consider na as the number of images associated to the anomaly or finding ‘a’. Let N be 
the total number of images in PadChest. Hence, na << N. Let M be the total number of 
anomalies or findings. In case of using the descriptor table to access the images 
associated to a given anomaly or finding, the number of steps to be performed would 
always be O(N x M). In this case, each row of the table must be analyzed to find out if 
the anomaly or finding of interest is present in the image represented by that row. On 
the contrary, when using the inverted index, the number of steps to access the images 
associated to a finding or anomaly, would be O(1). That is, access to these images 
would almost be instantaneous. Moreover, in the inverted index, collecting all the 
images associated with finding ‘a’ would take a time proportional to O(na). As a 
consequence, the number of steps for accessing to images associated to a given 
anomaly or finding is M times faster when using the inverted index than when using 
the PadChest’s table of descriptors. 
 
Table 2 confirms the theoretical predictions, discussed above, regarding the access 
time to images when using the descriptor table or the inverted index. In the first case, 
as the number of images to be retrieved increases, the access time to these images 
exhibit high and almost invariable values, within the range of [40; 44] seconds and a 
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mean of 42.14 ± 1.68 seconds. As explained before, for the descriptor table all the 
records must be inspected, leading to an average access time of 42 seconds. This 
represents a moderate correlation between the number of images associated to a 
given anomaly and the access time to them, as confirmed by a 0.430 Pearson 
correlation. 
 

Table 2. Access times to images, associated with terms from the PadChest repository, using the 
descriptor table and the implemented inverted index. 

 Access time (s) using 

Finding / Anomaly Number of 
images 

Table of 
Descriptors 

Inverted 
Index 

normal 50,390 43.93 2.46 

COPD 23,280 41.52 1.17 

cardiomegaly 15,022 40.17 0.69 

aortic elongation 11,780 43.38 0.51 

pleural effusion 9,931 44.04 0.46 

nodule 3,748 40.08 0.21 

emphysema 1,543 41.83 0.07 

 
However, when using the inverted index, we observed a strong and positive linear 
correlation (Pearson correlation = 0.999) between the number of images and the 
retrieval time of these images, as illustrated in Figure 2. The retrieval time to images 
is short (see the column: inverted index) and below 2.5 seconds, even for a large 
number of images. In general, when using the inverted index, the retrieval time is 
more than 10 times faster with respect to the table of descriptors. This experiment 
results support the algorithm complexity analysis aforementioned. 
 

 
Figure 2. when using the inverted index, the access time to images associated with a finding in 

PadChest is positively linear. 
 

Generation of Training Datasets 

The task of generating image datasets for training CNN models was achieved by three 
object classes: “ExperimentData”, “InvertedIndex” and “CXRImage”. The relationship 
between these classes is illustrated as a class diagram in figure 3. The class 
“ExperimentData” is in charge of collecting images and creating the inverted index 
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through the aggregated class “InvertedIndex”. The “CXRImage” class encodes a CXR 
image (keeps image size, pixel depth, etc.) and also keeps track of the anatomic 
regions where certain anomaly or finding is localized within the image. 
 

 
Figure 3. Object classes designed and implemented for creating an inverted index on the PadChest 

repository and for generating training datasets. 
 

The responsibility for generating datasets for training relies on four methods or 
functions of the class “ExperimentData”, as follows: 
 

1. Function: create_index(pure_terms: bool = False) 

 

This function creates an inverted index based on two attributes of the 
ExperimentData class: 1) the disk directory where the CXR images are stored; and 
2) the PadChest’s descriptor table file. This data is captured by the 
ExperimentData’s constructor method (__init__(...)). This function can 
additionally generate “pure” training datasets. These are datasets of CXR images 
where "only one type" of anomaly or finding is found within the image. This option 
can be specified by setting the parameter pure_terms = True. Since “pure” training 
datasets have fewer images than datasets with more than one anomaly or finding, 
it is important to further compensate this deficit by using data augmentation 
techniques. 

 

2. Function: check_integrity() 

 

This function checks the integrity of images to be indexed by the inverted index. 
Damaged images are excluded from the inverted index. 
 

3. Function: create_dataset(term_list: list) 

 

Based on a list of radiology terms term_list = [𝑡1, ⋯ , 𝑡𝑘], given as an argument, this 
function generates a training dataset, where each image contains one or more of 
the radiology terms specified. To perform this task, the function relies on two 
aspects: 1) the inverted index created and 2) a predefined hierarchy of radiology 
terms (anomalies or findings) as shown in figure 4. This hierarchy encodes the 
relationship between anomalies, inspired on a systematic diagnosis approach (a 
map or a guide) used by radiologists for reading CXR images. Hence, given a 
radiology term 𝑡𝑗  in [𝑡1, ⋯ , 𝑡𝑘] , all the anomalies associated to 𝑡𝑗 ’s children leaf 
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nodes are retrieved as part of the training dataset associated to the term 𝑡𝑗. Figure 
5 shows the browsing algorithm of from any sub-tree associated 𝑡𝑗 . 
 

 
Figure 4. Hierarchy of radiology terms, corresponding to a systematic diagnosis approach for 

reading CXR images. 
 

As an example, based on the hierarchy shown in figure 4, let term_list = [linear, 
nodular]. The leaf nodes (highlighted in red) associated with the term “linear” 
would be {laminar atelectasis, fibrotic band} (see the “linear” node and its children 
in figure 4). The images associated with “laminar atelectasis” and “fibrotic band” 
are retrieved through the created inverted index. Subsequently, the retrieved 
images are archived as a training dataset associated with the radiology term 
“linear”. Similarly, for the radiology term ‘nodular’, its children leaf nodes are: 
{nodule, granuloma, pulmonary mass}. Then, the inverted index retrieves the 
images associated to these three anomalies or findings. The retrieved images are 
stored as a training dataset labeled as ‘nodular’. 
 

 
Figure 5. Auxiliary function used for exploring the sub-tree associated to a given radiology term. 

The goal is to find the term’s children leaf nodes (anomalies or findings). 
 

The create_dataset(...) function makes also possible to consider an exclusion list 
in the generation of training sets. This way, images which are associated to certain 
anomalies are excluded, therefore adjusting the created dataset to specific user’s 
needs. This facility is formally expressed as follows: 
Let [𝑡1, ⋯ , 𝑡𝑘]  be a list of radiology terms and let [𝐿1, ⋯ , 𝐿𝑘]  be a list of image 
datasets, where each dataset 𝐿𝑗  corresponds to the radiology term  𝑡𝑗 . Let 
[𝑒1, ⋯ , 𝑒𝑝] be a list of excluded radiology terms, and let also be [𝐸1, ⋯ , 𝐸𝑝]a list of 
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excluded image datasets, where 𝐸𝑖 corresponds to the excluded radiology term 𝑒𝑖. 
Hence, each training set is defined as: 𝐼′𝑗 = 𝐼𝑗 − 𝐸𝑖𝑗 = 1,⋯ , 𝑝.  
 

It is important to highlight that a dataset generated by the function 
create_dataset(...) it is always balanced in terms of number of images associated 
to each radiology term. Moreover, the function makes an appropriate distribution 
of images, organized as: training, validation and evaluation sets. To do so, it first 
takes the minimum cardinality between the generated image datasets, 𝑐𝑚𝑖𝑛 =

𝑚𝑖𝑛
⬚

({|𝐼1|, ⋯ , |𝐼𝑘|}). Then the cardinality of each set is reduced to 𝑐𝑚𝑖𝑛 and the images 

are selected randomly in each case. Subsequently, the images from each dataset 
are organized into three mutually exclusive subgroups. These are the training, 
validation and test groups, with a distribution of the images of (70%, 20% and 10%) 
respectively. The create_dataset(...) function ensures that these three subgroups 
are disjoint in terms of patients. That is, images of the same patient never appear 
in more than one of these subgroups of images. This avoids both, biased data and 
biased performance metrics. 
 

4. Function: store_in_dataset(...) 

 

This function preserves all the information necessary to retrieve each training 
dataset generated. For this purpose, a portable SQLite database was created. The 
database structure is illustrated in Figure 6. As illustrated, in the database 
structure one Experiment may produce one or more Datasets. The “Experiment” 
table captures the context where the experiment is run. Similarly, the “Dataset” 
table captures the attributes which describe a single training dataset generated 
(e.g., dataset name, date, dataset type). Moreover, one training dataset is 
composed by one or more findings (anomalies). These findings are captured by 
the “Findings” table. Finally, one finding or anomaly is connected with one or 
more CXR images, which in turn are recorded by the table “Image”. The main 
utility of this database is to reproduce any training dataset generated, without 
having to store the images multiple times in storage devices. 
 

 
Table 3. Entity-relationship diagram illustrating the information considered in the portable SQLite 

database implemented for archiving the training datasets generated. 
 

The implemented tool was found to be flexible and fast for the creation of diverse 
datasets in terms of anomalies. As a use case we first created an inverted index from 
the PadChest repository, using single-label images. This is achieved by calling the 
function: create_index(true)); then, we called the function: create_dataset([‘normal’, 
‘not-normal’]) for creating dataset intended to train a model capable to discriminate 
between “normal” and “not normal” CXR images. Figure 6 shows the composition of 
both sets of images. The normal dataset was composed of “normal” labeled images. 
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Whereas, the “not-normal” dataset was composed of images labeled as child nodes 
labels in the subtree below the “not-normal” node, as shown in figure 4. This selection 
was automatically generated by the function: create_dataset(...). Moreover, the 
function split the dataset into the subsets: train, validation and test; it also balanced 
both datasets:  |normal|=2400 and |not-normal|=2359; For each dataset, the 
function kept the image distribution: 70%, 20% and 10%, for the “train”, “validation” 
and “test” sub-datasets respectively. 

 
 

 
Figure 6. Findings (labels) distribution for the automatically generated datasets of CXR images: 

"normal" and "not-normal". 
 
 

Conclusions 

The main contribution of this work is the creation of an inverted index adapted to the 
radiology application domain. By using this tool, it is possible to address the problem 
of organization and the efficient access and retrieval of medical images labeled with 
anomalies or findings of interest. This tool was adapted to manage images from the 
popular radiology image repository PadChest, with more than 160K chest X-ray images 
and more than 170 labels. We verified in practice that access and retrieval time of 
images associated to a given finding or anomaly is 10 times faster by using the inverted 
index than by using the PadChest image descriptor table.  
We additionally produced a software tool, supported by an inverted index and a 
predefined hierarchy of radiology terms, which automatically generates a wide 
diversity of training datasets of CXR images. These datasets are automatically 
structured for supervised learning tasks through deep learning models. We 
implemented a relational database for preserving experiments data involved in the 
generation of training datasets. A use case was presented as a practical example of 
using the implemented inverted index. 
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