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SUMMARY 

Polymorphisms with variable number of tandem repeats (VNTR), are genetic markers used in 

areas of genomics as evolutionary, epidemiological and population genetics studies. The growth 

of genomic sequences in data banks and the development of computational tools for 

bioinformatics allow the mining of these markers without the need to use experimental 

methods, extending the analysis to non-model organisms of medical or economic importance. 

Due to the low complexity of these sequences and the high number of candidates presented 

when inspecting one or several genomes in a scaled manner, difficulties arise in processing the 

volume of data that is generated and the detection of polymorphisms by visual inspection in 

candidate markers. 

A methodology and its algorithmic specificities are described, implemented in a software 

pipeline, which allow the fast and reliable identification of polymorphic SSRs loci. The global 

processing is done by the concatenation of the programs MIDAS, BLAST and the PSSR-Extractor 

script. The inputs are directory paths where multiple sequence files are found in FASTA or GBFF 

format and the outputs are the SSRs, access codes to the databases, positions in the genome, 

number of repetitions and the degree of polymorphism expressed as range of variation, allelic 

frequency, allele number and polymorphic information content (PIC). An optional script, 

SSRMerge, allows the identification of unique (non-redundant) loci in the set of processed 

genome sequences with taxonomically closed relationship. 

 Twenty three complete genomes (RefSeq from NCBI) belonging to various isolates of 

Mycobacterium tuberculosis were processed, 4433 SSRs were detected and from them 414 

non-redundant loci were extracted within the species. The polymorphisms for these SSRs were 

mined in the BLAST server outputs and different measures are reported that reflect loci 

variations. 
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RESUMEN 

Los polimorfismos con número variable de repeticiones en tándem (VNTR), constituyen 

marcadores genéticos utilizados en áreas de la genómica como estudios evolutivos, 

epidemiológicos y de genética poblacional. Los bancos de secuencias genómicas y las 

herramientas computacionales como BLAST permiten el minado de estos marcadores sin 

utilizar métodos experimentales, extendiéndolo a organismos no modelos de importancia 

médica o económica. Debido a la baja complejidad de estas secuencias y el número de 

candidatos que se presentan al inspeccionar un genoma cuando el procedimiento es escalado, 

surgen dificultades para procesar el volumen de datos generado y detectar por inspección 

visual los polimorfismos en los marcadores candidatos. 

Se presentan una metodología y varios software que permiten la identificación y extracción 

rápida y fiable de loci polimórficos de SSRs. El procesamiento se hace por la concatenación de 

los programas MIDAS, BLAST, y el script PSSR-Extractor. Las entradas son rutas de directorios 

donde se encuentren múltiples archivos de secuencia en formato FASTA o GBFF y las salidas son 

los SSRs, códigos de acceso al GenBank, posiciones en el genoma, número de repeticiones y el 

grado de polimorfismo expresado como rango de variación, frecuencia alélica, cantidad de 

alelos y contenido de información polimórfica (PIC). Un script opcional, SSRMerge, permite la 

identificación de loci únicos (no redundantes) a nivel de especie, de género o en general del 

conjunto las secuencias que se desee procesar. 

Se procesaron 23 genomas completos (RefSeq del NCBI) pertenecientes a diversos aislamientos 

de Mycobacterium tuberculosis. Se detectaron 4433 SSRs extrayéndose 414 loci no redundantes 

dentro de la especie. Realizado el minado de polimorfismos en las salidas del servidor BLAST 

para estos SSRs se reportan medidas que reflejan las variaciones que presentan estos loci. 

 

Palabras Clave: SSR; VNTR; marcador molecular; minería de datos; algoritmo 
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Introduction 

Microsatellites, or simple sequence repeats (SSRs), are small DNA motifs (from 1 to 6 

nucleotides) repeated in tandem, present in all the genomes of prokaryotic and eukaryotic 

organisms [1]. These sequences forms tracts that can range from a few copies to hundreds of 

them. The molecular mechanism that explains these sequences is the so-called replication 

slippage, being the mechanism itself the cause of variability observed in the number of copies 
[2]. Microsatellites present high levels of polymorphism, which is translated as variable number 

of tandem repeats (VNTR) [3]. They present mutation rates between 10-2 and 10-5 per locus per 

generation, contrasting with other markers, for example, simple nucleotide polymorphisms 

(SNP) that has mutation rate around 10-9. The variation in the mutation rates of VNTRs also 

produces a wide range of allelic diversity, making these markers very valuable to determine the 

degree of biological relationship between populations at the same species. 

When, for a given study, microsatellites are chosen as markers, researchers have two options 

for their detection and characterization: generating sequence data or mining in repositories of 

sequences, whether public or private. The first option requires the preparation of genomic 

libraries, sequencing platforms and software for subsequent detection. The second option 

makes the first two steps of the first option unnecessary, eliminating its high costs, leaving only 

the stage assisted by software [4]. 

In silico mining of polymorphic SSRs comprises two stages: 1st detect SSRs, with a wide range of 

applications developed, which, despite having the same purpose, use diverse statistical and 

computational criteria that influences the results obtained [5, 6]; 2nd determine if these SSRs has 

polymorphisms in repeat copy number, for which it is necessary to make sequence comparisons 

against repositories of sequences of related or the same species. The ideal applications for this 

purpose are those of BLAST type (Basic Local Alignment Search Tool, 

http://blast.ncbi.nlm.nih.gov/) [7]. This second stage, due the goal of BLAST of searching through 

local alignment homologous subsequences and the composition of the SSRs, which are regions 

of very low complexity, entails post-processing the outputs which presents serious difficulties 

when we want to do this mining in a scaled manner. This post-processing is usually done by 

manually editing the alignments and visually inspecting them when there are few SSRs 

candidates to explore, but when it comes to hundreds or thousands of candidates, the process 

necessarily requires a formalization and automation. In reviewed articles on the subject, the 

methodology for these purposes is not clarified, presenting itself in some cases in a low explicit 

manner and in others, omitting completely. Few references appear on this second stage and it 

is due to the usual procedure of pass directly to functional genotyping in experimental manner, 

for which an extensive and expensive detection system is required, which includes PCR, 

electrophoresis and sometimes sequencing. 

In the case of microsatellites, the determination of polymorphism by variation in copy number, 

either experimentally or in silico, is supported in the specificity of the flanks at each locus. 

These 5'- and 3'-flanking sequences, which are normally reported by software that detect SSR 

with sizes around 20bp, are assumed to be conserved and unique in the genomes of each 

http://blast.ncbi.nlm.nih.gov/
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species, allowing the unambiguous location of the locus and becoming candidates for primer 

sequences in PCR techniques. 

When we do an extensive search with BLAST (blastn, for nucleotides) and the query sequences 

are SSRs with their respective 5'and 3' flanks, we have several complications due to the low 

complexity or redundancy of these sequences and also the possibility that flanks are not 

properly preserved. We must remember that BLAST is a system designed to detect homologous 

sequences that precisely includes filters to eliminate the high scores that produce these 

repeated regions. This system does not have a specific design to detect non-redundant 

homologous sequences separated by a redundant region and therefore it can’t capture the 

locus as a whole in order to compare the variations in copy number. 

Figures 1A - 1D show BLAST outputs for an SSR with these characteristics and the different 

types of alignments that produce the findings (hits) for different entries in the chosen database. 

It is an SSR extracted from a genome of Vibrio cholerae faced with a database of nucleotide 

sequences of this bacterial species. The SSR query is shown with flanks of 20 bp in capital 

letters and the repeat region, which is the region that must vary in length in case of being a 

polymorphic locus, in lowercase letters, with repetition pattern aacaga. Figure 1A shows how 

the blastn finds a sequence that is identical to the query, producing 100% identity and an e-

value of 1e-44. In this case it is not ruled out that the sequence found (ID: AP018677.1) is the 

same one from which the SSR was extracted, although it does not necessarily have to be that 

way. Figure 1B shows an ideal case where an entry is found in the database (ID: CP026647.1) 

with a locus that presents variation in the number of repetitions, in this case it is a suppression 

of (aacaga)2. Figure 1C shows two hits for the same sequence (ID: CP010812.1), which 

represent two entries in the BLAST output file (hit table) where the locus could not be 

completely covered by the system and two alignments are presented that overlap in a certain 

region. This represents a case where it is complicated to detect, visually or by another type of 

method, the variation in the number of copies. Finally, Figure 1D shows an entry for a sequence 

(ID: CP028892.1) where the alignment was truncated, not reaching the other flank and not 

reporting any other hit for that sequence with the right flank. 

These are some examples where one can observe possible complications to interpret and 

detect polymorphism in a computational manner. When this is scaled to hundreds of markers it 

is totally impossible to do by simple visual inspection of alignments, even editing these to solve 

truncated entries. 

The methodology that we present describes the stages and the algorithmic bases for the 

computational detection of polymorphisms in SSRs. The general procedure is done by the 

concatenation of software ranging from the detection of the SSRs, processing these by BLAST 

system and interpretation of BLAST outputs for detection of polymorphic markers. 

In the following section (Methods) the sequence of steps followed by this methodology and the 

software used with explanation of its specificities are described in detail. In the Results section, 

the output corresponding to the detection of polymorphisms of SSRs in Mycobacterium 
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tuberculosis genomes is exposed and analyzed. It also describes input parameters, input and 

output formats and reported values. 
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Figure 1. Examples of BLAST outputs for an SSR showing some complications that affect the 

identification of polymorphic locus. See explanations in the text for cases A, B, C, D. 
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Methods 

Figure 2 shows the general sequence of stages for in silico mining of polymorphic SSRs. First a 

run of MIDAS [8] is done, entering as parameters a genomic sequence file that can be in FASTA 

or GBFF format (with simple or multiple entries), the minimum unit of the repeat to be 

detected and the alignment parameters for match, mismatch and indel. MIDAS detects all SSRs, 

exact or approximate, and generates a MultiFASTA file (extension .mfaa) with 20 bp flanking 

sequences added in capital letters and the repeat in lowercase letters. This format that marks 

the repeat region with lowercase letters is used by BLAST as masking procedure. 

Then we run SSRMerge script, which allows extracting the set of non-redundant SSRs from 

multiple MIDAS output files applied to multiple genomes. Its first parameter is a path to a 

directory in the PC and it will process all the files with extension .mfaa. This is an optional stage 

and is applicable only when we are analyzing multiple genomes of related species. The greater 

the taxonomic link between these genomes, the greater the probability of finding similar 

conserved loci that are repeated in different genomes. The algorithmic principle of this script is 

an all against all flank comparison of SSRs present in all files processed. This comparison is 

made by Nedleman-Wunsch global sequence alignment. When comparing two SSRs and they 

present more than 90% identity, one of them is chosen and the other is rejected. The result is a 

MultiFASTA file containing a set of non-redundant SSRs, according to the defined parameters, 

and we assume that these SSRs belong to different loci in the set of genomes analyzed. 

 

Figure 2. General sequence of steps for in silico mining of polymorphic SSRs. 
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The third step is a BLAST submitting (NCBI server, http://blast.ncbi.nlm.nih.gov/). The entry to 

the server is the MultiFASTA file of the previous stage. BLAST has many configuration 

parameters but the parameters that we must modify in that particular case are the following: In 

the search set (Choose Search Set) specify the organism for which we want to search (e.g. 

Mycobacterium tuberculosis (taxid: 1773)); in the program type select blastn, designed to find 

more remote homologies; in general parameters of the algorithm we are only interested in 

modifying the expected threshold (default threshold) which by default is 10. The expected 

threshold should be increased to > 30 allowing to find hits that although have large e-values 

they can be loci of interest. The next stage executed by PSSRextractor is responsible for 

debugging the wrong hits. Another parameter that needs to be changed is the masking 

procedure. We must mark the option of regions of low complexity and masking with lowercase 

letters. This guarantees that the blastn tries to recognize all loci including two flanks despite 

this is not always achieved, especially when the repeated region is large. The PSSRextractor 

script implements business rules to solve these cases. The output of this step is a hit table 

generated by the server. 

Finally, the BLAST output is processed by PSSRextractor. It can process one or several outputs 

because its first input parameter is a path to a directory. It will process all the BLAST output 

files. This script first parses the hit table extracting all its information. The other two script 

parameters are identity and percentage of coverage that define criteria to consider the flanks in 

each entry of hit table. Subsequently it proceeds to evaluate the polymorphisms by variable 

number of repeat in the SSRs and it does so as follows: 

For an SSR (query in hit-table) there will be one or many entries (subject in hit-table). Each SSR 

has a repeated unit size (RUS). Each entry in hit-table has the following values: subject access 

identifier (SAV), alignment length (AL), identity% (% I), initial position of the query (q.start), final 

position of the query (q.end), initial position of the subject (s.start) and final position of the 

subject (s.end). Then taking into account these data, the number of repetitions (RN) of each 

repeat unit is calculated by validating the following conditions: 

1. If AL> 40 Then: RN = (AL - 40) / RUS. When the alignment is greater than or equal 

to 40 it means that it covered both sides of the query, since the repeated region 

is marked and not taken into account. Then the difference would give us the 

number of nucleotides that are in the repeat region that divided by RUS gives us 

the RN (Repeat Number). These cases occur with very low frequency. 

2. If q.end <= 20 then the sequence found coincides with the left flank, otherwise, 

the sequence found coincides with the right flank. So for the same query, all the 

entries with the same SAV, will be classified to the left or to the right of the locus 

according to this condition. These cases are those that occur very frequently. See 

Figure 3. 

3. If s.start left < s.end left AND s.start right < s.end right AND s.end left < s.start 

right, then RN = (|s.start right - s.end left| - 1) / RUS. This condition validates 

that the left flank is to the left of the subject sequence and that the right flank is 
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to the right, being positive the direction (i.e. from 5' to 3'). Similar condition is 

validated when the address is negative, you just have to reverse the strict 

inequalities. This occurs because BLAST also analyzes the complementary 

sequence in the BD. See Figures 3 and 4. 

 

 

Figure 3. Example of BLAST hit-table output. It is observed how for a query it finds two entries for the 

same subject with SAV CP023640.1. The first entry has q.start = 1 and q.end = 20 (left side of the 

query) and the second has q.start = 47 and q.end = 66 (right side of the query). 

 

 

Figure 4. Validation of direction (positive or negative in query-

subject comparison) and RN calculation. 

 

4. RN chosen = min {RNs found}. This validation is done because doubtful cases 

can occur due to duplicate regions in the same genome. For example, for the 

query with the repeated unit AATACG (red zone) between the left flank (green 

zone) and the right flank (blue zone) the following cases can be found: 
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5. Only entries where the alignments have a % I (second parameter of the script) 

and a % of coverage (third parameter of the script, (AL / 20) x 100) greater 

than 90 are taken into account. These two parameters guarantee that the 

flanks found are well preserved. 

After having the set of RN for all subjects, PSSRextractor generates two result files, one detailed 

and one generic, with names equal to the hit-table but with suffixes _specific.xls and 

_generic.xls respectively. The detailed one provides information on each subject processed and 

the generic provides the information related to the polymorphism for each query, i.e. for each 

SSR. 

Among the information related to the polymorphism that generic report provides, are the 

following values: 

I. min_RN, max_RN and range: These are three columns in the report that 

respectively mean the minimum RN, the maximum RN and the range 

(max_RN - min_RN). 

II. frequency: Frequency of the allele that shows the original SSR from which 

the search was made. 

III. alleles: Number of alleles found for one locus (SSRs with different RNs). 

IV. PIC: Polymorphic Information Content (1 −  ∑ 𝑝𝑖
2

𝑖 ). This value is also 

known in other contexts as expected average heterozygosity or Nei 

genetic diversity, and gives a measure of the probability that, for a single 

locus, a pair of alleles chosen at random in the population are different. 

The rest of values shown in generic report come from MIDAS (access_number, pattern, 

pattern_length, RN, inaccuracy, entropy_5, entropy_3), which provides valuable information 

when interpreting polymorphic SSRs. For example, the degree of inaccuracy found in SSRs or 

the compositional entropy of the flanks allow us to know, respectively, the degree of inaccuracy 

of the repeated tract and how informative the flanks may be in the characterization of the 

locus. 

The values of the last column of the generic report (exceptions) show labels that correspond to 

exceptions in polymorphism validation. There are entries in the generic report where more 

than one of these labels can appear because the exceptions can occur simultaneous. When all 

the subject sequences have exceptions, the labels are place. Labels are the following: 

i. D (degenerated): The subjects have a% I and/or a % coverage <90%. 

ii. NF (not found): No subject was found in the database with similarity. 

iii. O (outlier): The number of repeat units between the flanks of the subjects is 

doubtful because it is very large, being unlikely that there is a microsatellite 

GACCCGGAGGCCGACCCGGTAATACGAATACGAATACGAATACGTCGAGGACACCTGCGGTTTGAGGTGACCCGGAGGCCGACCCGGTAATACGAATACGAATACGTCGAGGACACCTGCGGTTTG 

GACCCGGAGGCCGACCCGGTAGTCTAGAGACGGACCCGGAGGCCGACCCGGTAATACGAATACGAATACGAATACGTCGAGGACACCTGCGGTTTGCAGASAGACTCGAGGACACCTGCGGTTTG 

GACCCGGAGGCCGACCCGGTATCTACTAGACCGAGTAGCTAGTACTAGCATCTATGCATAATCGACCCGGAGGCCGACCCGGTAATACGAATACGAATACGAATACGTCGAGGACACCTGCGGTTT 

ACCCGGAGGCCGACCCGGTAATACGAATACGAATACGAATACGTCGAGGACACCTGCGGTTTGCAGTATGCTGTGTCGACACAGCACTAGCTAGCTGATCGTAGACCTCGAGGACACCTGCGGTTTG 



Revista Cubana de Informática Médica 2019:11(1)2-17 

 

12 
 
http://scielo.sld.cu 
 

between them. The cut-off values established for this exception were mono: 

157 bp, di: 364 bp, tri: 109 bp, tetra: 45 bp, penta: 150 bp and hexa: 193 bp. 

These values were defined after processing all the SSR from more than 200 

bacterial genomes, registering their sizes, and establishing the cut-off in 3 

times the interquartile range. 

iv. U (unpair): For the same subject sequence, one edge appears and not the 

other. 

 

Results and Discussion 

 

Mycobacterium tuberculosis, also known as Koch's bacillus, is a bacterial pathogen, causative 

agent of tuberculosis, a contagious infection that mainly affects the lungs but can spread to 

other organs. The prevalence of this disease is among the highest in the world, with 

approximately 12 million people infected. The bacillus is also object of concern in medical and 

scientific communities for presenting strains with resistance to multiple antibiotics. 

The errors due to sliding in replication that cause microsatellites are normally repaired by three 

enzymes mutL, mutS and mutH, however some genomes such as mycobacteria suffer from this 

enzymatic system [9]. Due to this, these bacterial species constitute a valuable example to 

investigate the rates of microsatellite mutations and the existence of regulatory mechanisms 

that govern them [10]. 

M. tuberculosis is a pathogen with a genetic diversity emerged from more diverse strains, 

gaining in virulence mechanisms [11]. An example of medical importance in the expansion of 

microsatellites is that which occurs in proteins of mycobacteria with pentapeptide-2 (PP2) [12]. 

In the present study, 23 complete genomes were analyzed (RefSeq sequences), downloaded 

from the NCBI ftp site (ftp://ftp.ncbi.nlm.nih.gov/refseq/release/bacteria/), belonging to 

various M. tuberculosis isolates. MIDAS detected 4433 SSRs, and from them, SSRMerge script 

extracted 414 non-redundant loci from the species. The polymorphisms were mined from the 

BLAST server outputs with PSSRextractor script. The outputs of these two scripts can be found 

in the supplementary files (species_all.mfaa and Y692YMPN014-Alignment_generic_result.xls). 

From 414 SSRs, 288 did not show any type of exception, and of these, 104 showed PIC> 0 

(36.1%). Figure-5 shows average values obtained for the different types of SSRs classified by the 

size of the repeat unit (RUS). 

 

RUS Quantity RN inaccuracy range frequency alleles PIC

1 6 23.17 11.45 8.33 0.18 3.17 0.08

3 78 8.46 8.62 1.15 0.11 2.10 0.07

4 9 3.89 4.86 1.00 0.01 2.00 0.02

5 4 5.50 9.05 1.00 0.06 2.00 0.10

6 7 4.71 7.83 1.29 0.28 2.29 0.03
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Figure 5. Average values for some measurements taken from the generic report for M. 

tuberculosis. 
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The number of SSRs with 3bp repeat unit is significant. This is because most of the bacterial 

genomes are coding regions, which have a bias in the use of codons. A single SSR was detected 

for dinucleotide and was excluded from the result due to exceptions in the polymorphism 

validation. On average, SSRs of 1bp were more inaccurate and showed greater polymorphism 

with more alleles and elevated PIC (3.17 and 0.08 respectively). The repetition tracts (RN) were 

also significantly greater than the rest. 
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Figure 6. SSRs from the M. tuberculosis with PIC> 0. 

pattern RUS RN inaccuracy entropy_5 entropy_3 min_RN max_RN range frequency alleles PIC

g 1 15 6.67 1.55 1.72 14 23 9 0.989 3 0.021

c 1 20 15 1.88 1.68 20 25 5 0.01 2 0.02

g 1 27 14.8 1.74 1.86 27 35 8 0.01 2 0.02

g 1 23 17.4 1.68 1.24 21 23 2 0.025 2 0.049

g 1 27 7.41 1.72 1.94 14 27 13 0.01 5 0.185

g 1 27 7.41 1.72 1.94 14 27 13 0.01 5 0.185

acc 3 6 5.26 1.8 1.88 5 7 2 0.95 3 0.095

acc 3 4 0 1.69 1.95 4 5 1 0.01 2 0.02

agc 3 4 0 1.8 1.72 4 5 1 0.01 2 0.02

ccg 3 6 10 1.96 1.91 6 7 1 0.01 2 0.02

ccg 3 4 0 1.88 1.93 3 4 1 0.426 2 0.489

ccg 3 6 5.26 1.68 1.95 6 10 4 0.03 5 0.494

ccg 3 5 5.88 1.95 1.82 5 6 1 0.01 2 0.02

ccg 3 4 0 1.93 1.92 4 5 1 0.01 2 0.02

ccg 3 4 0 1.99 1.97 4 5 1 0.01 2 0.02

ccg 3 10 15.6 1.68 1.86 10 11 1 0.01 2 0.02

ccg 3 14 22.7 1.94 1.93 14 15 1 0.01 2 0.02

ccg 3 21 18.8 1.93 1.95 21 22 1 0.01 2 0.02

ccg 3 18 22.8 1.74 1.84 18 19 1 0.01 2 0.019

ccg 3 6 10 1.85 1.99 6 7 1 0.01 2 0.02

ccg 3 5 5.88 1.96 1.99 5 6 1 0.01 2 0.02

cgg 3 4 0 1.97 1.86 4 5 1 0.01 2 0.02

cgg 3 4 0 1.88 1.86 4 5 1 0.01 2 0.02

cgg 3 6 10.5 1.94 1.86 6 7 1 0.5 2 0.5

cgg 3 8 11.1 1.96 1.97 8 9 1 0.01 2 0.02

cgg 3 5 5.56 1.85 1.91 5 6 1 0.012 2 0.024

cgg 3 4 0 1.72 1.74 4 5 1 0.01 2 0.02

cgg 3 4 0 1.96 1.94 4 5 1 0.01 2 0.02

cgg 3 4 0 1.74 1.99 4 5 1 0.01 2 0.02

cgg 3 14 24.4 1.87 1.86 14 15 1 0.01 2 0.02

cgg 3 22 20.6 1.85 1.86 22 23 1 0.5 2 0.5

cgg 3 19 29.3 1.8 1.93 19 21 2 0.01 3 0.058

cgg 3 4 0 1.77 1.85 4 5 1 0.01 2 0.02

cgt 3 4 0 1.84 1.86 4 5 1 0.01 2 0.02

cgt 3 6 10 1.74 1.72 6 7 1 0.01 2 0.02

cgt 3 4 0 1.72 1.76 4 5 1 0.01 2 0.02

cgt 3 4 0 1.99 1.85 4 5 1 0.01 2 0.02

ggt 3 4 0 1.9 1.85 4 5 1 0.01 2 0.02

ggt 3 6 10 1.68 1.86 6 7 1 0.01 2 0.02

ggt 3 4 0 1.8 1.64 4 5 1 0.01 2 0.02

gtt 3 4 0 1.37 1.96 4 5 1 0.01 2 0.02

acc 3 11 11.8 1.68 1.69 11 12 1 0.01 2 0.02

ccg 3 4 0 1.58 1.95 4 5 1 0.02 2 0.039

cgg 3 8 16.7 1.99 1.97 7 8 1 0.941 2 0.112

cgg 3 4 0 1.79 1.93 4 5 1 0.02 2 0.039

ggt 3 7 13 1.8 1.78 7 9 2 0.01 3 0.039

ccg 3 10 15.6 1.88 1.79 10 11 1 0.99 2 0.02

cgg 3 4 0 1.88 1.86 4 5 1 0.01 2 0.02

ccg 3 32 22.7 1.88 1.91 31 32 1 0.088 2 0.16

act 3 6 10 1.37 1.92 5 7 2 0.822 3 0.296

ccg 3 16 16 1.91 1.84 16 17 1 0.01 2 0.02

ccg 3 16 21.6 1.77 1.84 16 17 1 0.015 2 0.029

aac 3 4 0 1.96 1.37 4 5 1 0.01 2 0.02

acc 3 4 0 1.64 1.8 4 5 1 0.01 2 0.02

acc 3 6 10 1.86 1.68 6 7 1 0.01 2 0.02

acc 3 4 0 1.85 1.9 4 5 1 0.01 2 0.02

acg 3 4 0 1.76 1.72 4 5 1 0.01 2 0.02
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Fig. 6 (cont.) SSRs from the M. tuberculosis with PIC> 0. 

 

Figure 6 shows the complete list of 104 extracted SSRs that showed levels of polymorphism. 

The entire sequences of the markers, including the flanking sequences, the access numbers and 

positions in the genome can be obtained from the MIDAS outputs. 

The methodology described has distinctive features with respect to other in silico procedures 

reported in the literature: 

  

pattern RUS RN inaccuracy entropy_5 entropy_3 min_RN max_RN range frequency alleles PIC

acg 3 6 10 1.72 1.74 6 7 1 0.01 2 0.02

acg 3 4 0 1.86 1.84 4 5 1 0.01 2 0.02

ccg 3 4 0 1.84 1.97 4 5 1 0.01 2 0.02

ccg 3 4 0 1.94 1.96 4 5 1 0.01 2 0.02

ccg 3 4 0 1.74 1.72 4 5 1 0.01 2 0.02

ccg 3 5 5.56 1.91 1.85 5 6 1 0.012 2 0.024

ccg 3 4 0 1.91 1.94 4 5 1 0.01 2 0.02

ccg 3 8 11.1 1.97 1.96 8 9 1 0.01 2 0.02

ccg 3 6 10.5 1.86 1.94 6 7 1 0.5 2 0.5

ccg 3 4 0 1.86 1.88 4 5 1 0.01 2 0.02

ccg 3 4 0 1.86 1.97 4 5 1 0.01 2 0.02

cgg 3 5 5.88 1.99 1.96 5 6 1 0.01 2 0.02

cgg 3 6 10 1.99 1.85 6 7 1 0.01 2 0.02

cgg 3 18 22.8 1.84 1.77 18 19 1 0.01 2 0.019

cgg 3 14 25 1.79 1.79 14 15 1 0.01 2 0.02

cgg 3 21 18.8 1.95 1.93 21 22 1 0.01 2 0.02

cgg 3 10 15.6 1.79 1.88 10 11 1 0.99 2 0.02

cgg 3 8 18.5 1.93 1.88 8 9 1 0.005 2 0.01

cgg 3 8 18.5 1.93 1.88 8 9 1 0.005 2 0.01

cgg 3 14 22.7 1.93 1.94 14 15 1 0.01 2 0.02

cgg 3 24 23.4 1.85 2 24 25 1 0.01 2 0.02

cgg 3 10 15.6 1.86 1.68 10 11 1 0.01 2 0.02

cgg 3 4 0 1.93 1.99 4 5 1 0.01 2 0.02

ggt 3 6 5.26 1.88 1.8 5 7 2 0.95 3 0.095

ccg 3 43 26.9 1.74 1.24 43 48 5 0.012 2 0.023

ccg 3 21 25.4 1.62 1.87 20 21 1 0.01 2 0.02

ggt 3 4 0 1.59 1.85 4 5 1 0.5 2 0.5

atcg 4 5 9.09 1.91 1.41 5 6 1 0.01 2 0.02

ccgg 4 5 13.6 1.99 1.76 5 6 1 0.01 2 0.02

ccgg 4 4 5.26 1.87 1.72 4 5 1 0.01 2 0.02

cggg 4 3 0 1.93 1.86 3 4 1 0.01 2 0.02

cggg 4 4 5.26 1.94 1.93 4 5 1 0.01 2 0.02

cggg 4 3 0 1.69 1.93 3 4 1 0.01 2 0.02

cccg 4 4 5.26 1.93 1.94 4 5 1 0.01 2 0.02

cccg 4 3 0 1.86 1.93 3 4 1 0.01 2 0.02

ccgg 4 4 5.26 1.72 1.87 4 5 1 0.01 2 0.02

cccgg 5 6 15.2 1.93 1.92 6 7 1 0.01 2 0.02

cgcgg 5 4 4.55 1.69 1.86 4 5 1 0.01 2 0.02

cgcgg 5 8 11.9 1.74 1.91 7 8 1 0.2 2 0.32

ccgcg 5 4 4.55 1.86 1.69 4 5 1 0.01 2 0.02

aatacg 6 4 0 1.69 1.94 3 5 2 0.97 3 0.058

accagc 6 4 7.41 1.77 1.94 4 5 1 0.01 2 0.02

accgcc 6 7 20 1.93 1.69 7 8 1 0.005 2 0.01

atgtcg 6 3 0 1.85 1.3 3 4 1 0.01 2 0.02

accgcc 6 7 20 1.85 1.69 7 8 1 0.005 2 0.01

attcgt 6 4 0 1.94 1.69 3 5 2 0.97 3 0.058

ctggtg 6 4 7.41 1.94 1.77 4 5 1 0.01 2 0.02
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(I) It has been experimentally demonstrated that not all SSRs loci show polymorphism. Among 

other aspects, this is because the locus within the analyzed population is not subject to a 

particular changing dynamic. In this sense, the methodology allows us to select those loci 

that do show polymorphisms in the selected sequence data banks, reducing the costs when 

it is done experimentally. 

(II) Determination of locus polymorphism is fully automated. The common procedures to detect 

polymorphisms, not the experimental ones, use visual inspection of multiple alignments for 

markers. In this sense, the procedure is ideal for large-scale analysis. 

(III) Polymorphism is defined strictly as variation in copy number (PIC> 0), and not as simple 

insertions or deletions present in markers that do not correspond to the size of the repeat 

unit. 

(IV) The procedure can be done starting from SSRs detection in one sequence, but optionally, it 

can also start from multiple sequences without the need to assemble a consensus one. This 

allows a SSRs detection that do not belong to the same locus despite being in highly related 

genomes. SSRMerge script allows to eliminate the redundancy of common loci in all 

sequences. 

 

The methodology is excellent for purely computational analysis of SSR loci, applied to 

evolutionary studies, genotypic identification or functional studies with the genes involved. For 

experimental analysis using PCR, the methodology provides all the necessary information 

(sequence access identifier, positions in the genome, flanking sequences, etc.) that allows the 

design of primers using applications available on internet. 

 

Availability 

All the software are available in supplementary material. MIDAS (binary distribution 

midas_v1.1.exe). SSRMerge and PSSRExtractor are compressed in zip format. Both are Java 

NetBeans Projects for JDK 1.8 platform or above. The binary jar files, for command line 

execution, are in \dist folder once decompressed. 

 

Conclusions 

A methodology for the fully computational detection of microsatellite polymorphic loci is 

described. As example of use, 23 complete genomes belonging to various isolates of M. 

tuberculosis were processed. 4433 SSRs were detected and from them 414 non-redundant loci 

were extracted within the species. The polymorphisms were mined from BLAST outputs and 

104 SSRs showed polymorphisms. The methodology is intuitive and comes with software for 

application. Its main advantage lies in the levels of scaling it allows and the reduction of costs 

when experimental analyzes are made, allowing preselection of markers showing 

polymorphism in chosen genomic sequence data banks. 
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